

Geomi equipment

MENT

GEOMIL EQUIPMENT

Introduction

About the Speaker

William Bond

- Master of Geology (MGeol)
- Project Engineer for UK CPT specialist – SCPT
- Moved to Hong Kong 2015: Project management in CPT, HDD, HDC
- Joined Geomil as Technical Manager in 2017

Introduction Schedule

- Introduction to the CPT
- Advantages and limitations
- Applications

Q&A

- State of CPT in Hong Kong
- Challenges of CPT in Hong Kong and some in general
- The future of CPT in Hong Kong
 - Advanced technology
 - Control of CPT in Hong Kong

Introduction The CPT

- Ground investigation technique used in soils
- Instrumented cone advanced into ground
- Measures:
 - Cone Resistance (q_c)
 - Sleeve Friction (f_s)
 - Pore Water Pressure (u₂)
 - Inclination
- Connected to the Data Acquisition System (DAQ) via cable and provides data to the operator in real time
- Provides soil strength and behaviour characteristics
- Advanced into the ground using hydraulic rams and reaction force

Dead weight

Ground anchors

Ground anchors

Ground anchors + dead weight

Ground anchors + dead weight

Structure

Full sized trucks – Geomil Grizzly

Crawlers

Seabed units (full sized cone):

MANTA

MANTA

Seabed units

(miniature cone and coiled tubing):

NEPTUNE

SIDEWINDER

Source: Sage Engineering

For shallow investigations (pipeline and cable routing)

Advantages of CPT Compared to Conventional GI

- Effective and efficient alternative for conventional Site Investigation methods such as drilling or SPT
- In-situ test
- Real-time data
- Established and recognized method
- Repeatable, accurate and reliable
- Very fast (1 meter = 1 minute)
- High resolution data (1 point per cm)
- High sensitivity data (Just a few kPa)

Limitations of CPT Compared to Conventional GI

- Soil conditions may limit the use of CPT, for example due to gravel, boulders or rock
- Workarounds: drill out, run casing or use a larger (15 cm²) cone
- Depth might be limited due to reaching maximum thrust
- It might be impossible to obtain sufficient reaction force
- Relatively high investment (compared to SPT)
- Requires trained operators
- Site accessibility
- This is not limited to CPT!

Advancement of the CPT A Brief History

- First mechanical cone produced by Geomil's predecessor GMF :1934
- First manually operated 10 tonne test: 1935
- Conically shaped part added to prevent soil ingress: 1948
- Friction sleeve added: 1953
- First commercially developed electric cone introduced by Fugro: 1965
- Pore pressure probes first deployed alongside CPT: 1974
- Introduction of the piezocone (CPTu): 1980
- Several rapid developments since:
 - Magnetometer cones
 - Environmental cones
 - Video cones
 - Seismic cones

Introduction The Cone

Compression vs Subtraction

- Cone designs:
 - Compression cone
 - Accurate
 - Sensitive
 - Subtraction cone
 - Solid
 - Tension cone (hardly used)

Compression vs Subtraction Compression Design

Principle:

- Independent measurement of cone resistance (qc) and local sleeve friction (fs)
- Two separate load cells
- Outer strain gauge bridge measures sleeve friction (fs)
- Inner strain gauge bridge measures cone resistance (qc)
- No further processing required

Compression vs Subtraction Subtraction Design

Principle:

- Combined measurement of cone resistance (q_c) and local sleeve friction (f_s)
- One combined load cell
- Upper strain gauge bridge measures cone resistance (q_c) + sleeve friction (f_s)
- Lower strain gauge bridge measures cone resistance (q_c) only
- Further processing required
 - (f_s = output upper bridge -/- output lower bridge)

Compression vs Subtraction Which to use?

Compression

- Smaller strain gauge bridge for sleeve friction
- Based on Hooke's law same force will result in larger deformation
- More sensitive to small strains
- More delicate

Subtraction

- One large strain gauge bridge for both sleeve friction and cone resistance
- Based on Hooke's law same force will result in smaller deformation
- Less sensitive to small strains
- Less delicate

Compression vs Subtraction Which to use?

- What kind of soils are we testing?
 - Range of load cell(s) and transducers
 - Cone type and size
 - Application of standards
 - Area factor (a)

	Compression	Equally good	Subtraction
Predominantly soft soils	X		
Mixed soils		X	
Predominantly hard soils			Х
Accurate f _s data required	X		
High production required			X

Applications of CPT Data Parameters Obtained

- Directly Measured Parameters
 - Cone Resistance (q_c)
 - Sleeve Friction (f_s)
 - Pore Pressure (u₁, ₂ or ₃)
- Directly Derived Parameters
 - Friction Ratio (Rf=(fs/qt) · 100%)
 - Equilibrium pore pressure (u₀)
 - Excess pore pressure (∆u=u2 u0)
 - Corrected cone resistance (qt=qc + (1 a) · u2
 - Effective cone resistance $(q_e = q_c u_2)$

Applications of CPT Data Parameters Obtained

- Directly Measured Parameters
 - Cone Resistance (q_c)
 - Sleeve Friction (f_s)
 - Pore Pressure (u₁, ₂ or ₃)
- Directly Derived Parameters
 - Friction Ratio (Rf=(fs/qt) · 100%)
 - Equilibrium pore pressure (u₀)
 - Excess pore pressure (∆u=u2 u0)
 - Corrected cone resistance (qt=qc + (1 a) · u2
 - Effective cone resistance $(q_e = q_c u_2)$

CPT Data Friction Ratio

- Friction ratio (R_f)
- % of total resistance from sleeve friction (f_s/q_t)
- Generally:
 - Low in granular material
 - High in cohesive materials
- Normally between 0.1-10%

Applications of CPT Data Parameters Obtained

- Indirectly derived parameters:
 - Total vertical stress
 - $(\sigma_{vo}=\sum \gamma (dry + wet))$
 - Effective vertical stress
 - $(\sigma'_{vo} = \sigma_{vo} u_0)$
 - Net cone resistance
 - $(q_n = q_t \sigma_{vo})$
 - Pore pressure ratio
 - $(B_q = (u_2 u_0) / (q_t \sigma_{vo}))$
 - Normalized cone resistance
 - $(Q_t = (q_t \sigma_{vo}) / \sigma'_{vo})$
 - Normalized friction ratio
 - $(F_r = f_s / (q_t \sigma_{vo}))$

- Advanced derived parameters:
 - Soil classification
 - Internal friction angle: Frictional / coarse grained soils
 - Relative density: Frictional / coarse grained soils
 - Undrained shear strength: Fine grained / cohesive soils
 - Soil behavior type index
 - Equivalent SPT N60 value
- Depending on software used more parameters may be available!

Applications of CPT Data Suitability of Parameters

Soil Type	D _r	Ψ	Ko	OCR	St	S _U	φ'	E,G [*]	Μ	$\mathbf{G_0}^{\star}$	k	c _h
Sand	2-3	2-3	5	5			2-3	2-3	2-3	2-3	3-4	3-4
Clay			2	1	2	1-2	4	2-4	2-3	2-4	2-3	2-3

Applicability of using CPTU data for soil parameters according to Robertson (Guide to CPT, 2015)

Table 4 Perceived applicability of CPTu for deriving soil parameters

1=high, 2=high to moderate, 3=moderate, 4=moderate to low, 5=low reliability, Blank=no applicability, * improved with SCPT

Applications of CPT Data Use of CPT Data

- Stratification
 - Interpretation characteristics
 - soft vs hard, dr
- Soil classification
 - Use of empirica
 - parameters con profiles
- Soil design paramet
 - Use of empiric: Soil classification channel conebe obtained q_c and f_s data (Douglas and Olsen, 1981)

Nophieseletadentication charactering Regenment Roberts \$ 07,81,990)

Applications of CPT Data **Typical Applications**

- Any geotechnical problem in soils testable by CPT
- (Pile) foundation design
- Settlement prediction
- Compaction control (land reclamations)
- Embankment and dike profiling
- Stability issues (mine tailings)
- Seismic survey (liquefaction analysis)
- Environmental issues
- Pipe line / cable routing
- Wind turbine foundations

Cone resistance and sleeve friction before and after compaction

(Massarsch and Fellenius, 2002)

State of CPT in Hong Kong Overview

- Generally healthy and competitive CPT market in Hong Kong
- Reclamation projects driving the CPT market
- CPTs (generally) compliant with international standards
- Many local contractors with CPT capability, growing understanding
- Engineers, designers, end clients less understanding
- Hong Kong is behind most CPT markets in terms of advanced/specialised testing
 - Seismic CPT, Soil Moisture Probe, Digital Cone etc.

CPT in Hong Kong – Ongoing

- HKIA 3RS
 - Pre and Post improvement CPTs
 - Paired with ground improvement such as DCM
 - Delineating surface of competent strata
 - 3 Manta-200, 1 Manta-100, 3 Fox-200, 1 Shark in operation
 - Interesting signatures such as negatively shifted hydrostatic gradient
 - Strength of CPTu carrying out analysis in consolidating soils

www.geomil.com

CPT in Hong Kong – Upcoming

- HKIA 3RS
 - When the reclamation comes above water
 - 1000s of land CPTs
 - Many local contractors
- Tung Chung Development
 - 2400 marine CPTs
 - Buildking Samsung JV
- Shek Kwu Chau
 - Reclamation for incinerator
 - 170 marine CPTs in first round
 - China Harbour Engineering Company

CPT in Hong Kong Challenges

Operational error (not Hong Kong specific)

Data Quality Operational Sources of Error

Cone condition

Zero readings Straightness Cleanliness

Water and dirt seals Wear

- Piezocone saturation
 Filter (replaced?) Cone / pressure chamber
- Temperature influences
- Penetration speed (20 mm/s)
- Large inclination
- Zeroing location (reference readings)
- Malfunctioning depth measurement

1. minimum shape of the cone tip after wear

2. maximum shape of the cone tip

- Gaps in readings
- Negative and/or "zero" friction readings

- Gaps in readings
- Negative and/or "zero" friction readings
- Friction readings following cone resistance pattern

- Gaps in readings
- Negative and/or "zero" friction readings
- Friction readings following cone resistance pattern
- Sluggish pore pressure readings

- Gaps in readings
- Negative and/or "zero" friction readings
- Friction readings following cone resistance pattern
- Sluggish pore pressure readings
- Drifts in zero readings, either during a CPT or in between various CPT's

CPT in Hong Kong Challenges

- Operational error (not Hong Kong specific)
- Reliance on experienced si fu drillers (again happens everywhere)
- PS (Particular Specifications) largely copied from project to project

Challenges Particular Specifications

- Particuliar specifications often handed down from project to project
- Specifications suitable for one project often not suitable for the next
- Common over specifications:
 - 200 kN pushing capacity
 - Application Class 1 tests
 - On site calibration set up
 - Changing filter each test
- Some over specifications cost production and therefore essentially reduce profit
- Some are not possible such as Class 1 tests in sands and mixed soils
- Some reduce resolution/sensitivity such as needing 100MPa cone

CPT in Hong Kong Challenges

- Operational error (not Hong Kong specific)
- Reliance on experienced si fu drillers (again happens everywhere)
- PS (Particular Specifications) largely copied from project to project
- Insistence on Application Class 1 tests

Application Classes

Application classes (ISO):

- Introduction of Application (Accuracy) Classes
- Class 1 : Most strict : design parameters in soft clays
- Class 4 : Least strict : profiling

Main purpose is to allow for differences in:

- Soil conditions
- Project requirements
- Use of results
- Stratigraphy only
- Engineering parameters
- National / regional traditions and experience

Table 2 — Application classes

					Use			
Applic. Class	Test type	Measured parameter	Allowable minimum accuracy ^a	Maximum length between measurements	Soil ^b	Interpre- tation / evaluation		
		Cone resistance	35 kPa or 5 %					
		Sleeve friction	5 kPa or 10 %		A	G, H		
1	TE2	Pore pressure	10kPa or 2 %	20 mm				
		Inclination	2°					
		Penetration length	0,1 m or 1%					
		Cone resistance	100 kPa or 5 %		A B C D			
	TE1	Sleeve friction	15 kPa or 15 %			G, H* G, H G, H		
2	TE2	Pore pressure ^d	25 kPa or 3 %	20 mm				
		Inclination	2°			G, H		
		Penetration length	0,1 m or 1 %					
		Cone resistance	200 kPa or 5 %		A B C D			
3	TEA	Sleeve friction	25 kPa or 15 %			G G, H* G, H G, H		
	TE2	Pore pressure ^d	50 kPa or 5 %	50 mm				
		Inclination	5°					
		Penetration length	0,2 m or 2 %					
		Cone resistance	500 kPa or 5 %		A B C	G*		
4	TE1	Sleeve friction	50 kPa or 20 %	50 mm		G*		
		Penetration length	0,2 m or 2 %		D	G*		
NOTE F	or extrem	nely soft soils even high	er demands on the acc	uracy may be needed.				
The allo	wable minin	num accuracy of the meas	ured parameter is the larg	er value of the two quoted.	The relative ac	curacy applies to		
the measure	sured value	e and not the measuring ra	nge					
Accordin A Ho B Mix C Mix D Ver	g to EN IS mogeneous ed bedded ed bedded y stiff to ha	O 14688-2: sly bedded soils with very s soils with soft to stiff clays soils with stiff clays (typica rd clays (typically $q_c \ge 3$ M	soft to stiff clays and silts (; (typically $q_c \le 3 \text{ MPa}$) and ally 1,5 MPa $\le q_c < 3 \text{ MPa}$ Pa) and very dense coars	typically $q_c < 3 \text{ MPa}$) d medium dense sands (typ) and very dense sands (typ ie soils ($q_c \ge 20 \text{ MPa}$)	ically 5 MPa $\leq q$ ically $q_{c} > 20 N$	<i>q</i> c < 10 MPa) IPa)		
^C G pro G* ind H inte H* ind	filing and m icative profi protation i icative inter	naterial identification with lo iling and material identifica in terms of design with low pretation in terms of desig	ow associated uncertainty tion with high associated in associated uncertainty let n with high associated uncertainty	level uncertainty level vel certainty level				
Pore pressure can only be measured if TE2 is used.								

LABORATORY CALIBRATION										
Uncertainty analysis Maximum error of measured value (%)								Pote Uncer (kPa/	ntial tainty 'Deg)	
Sensor	Resolution	Output stability	Repeatability	Linearity	Hysteresis	Zero drift	Dimensional	COMBINED UNCERTAINTY (%)	Temperature changes	Inclined load
Cone resistance	0.0031	0.0048	0.5623	0.1434	0.2742	0.0001	0.2800	0.70	1.20	0.3
Sleeve										
friction	0.0005	0.0009	0.5102	0.0067	0.4219	0.0009	0.1400	0.68	0.06	0.4
Pore										
pressure	0.0000	0.0001	0.2400	0.2784	0.3230	0.0002		0.49	0.5	

Example of results of a laboratory calibration of a piezocone and associated uncertainty analyses – Lunne et al 2014

Test procedure						
Saturation procedure used for pore water	Vacuum for 5 hours in glycerin oil					
pressure system						
Air temp. before and after testing on deck	17°C / 17°C reference reading taken in a water bath					
Probe location for deck reference readings	Deck in seawater bath					
Time allowed for temperature compensa-	Output values were monitored until stability was reached after 7 minutes					
tion before reference readings on deck						
Probe preparation before reference read-	Cone rinsed with seawater, sleeve friction rotated several times, dirt removed from					
ings on deck	gaps and seals by flushing					
Probe location for pre- and post- test refer-	Seafloor (Offset 0.2m)					
ence readings						
Time allowed for temperature compensa-	Output values were monitored until stability was reached after 8 minutes					
tion on the seabed						
Observations during test (stone, sound,	Dropped stone encountered at 5 m pore pressure sensor showed cavitation					
bent rods, cone preload etc.)						

Example of field records and field assessment of Application class – Lunne et al 2014

Geomil

Test results							
Corrections done during processing Standard correction to cone resistance accounting pore water pressure Depth corrected based on inclination measurements							
Inclination of probe relative to vertical	Maximum inclination 1°.						
Temperature changes during the test	Not applicable, no temperature sensor						
Evaluation of cone resistance profile	Good response of cone resistance. No anomalies have been detected.						
Evaluation of sleeve friction profile	Good response of cone resistance. No anomalies have been detected.						
Evaluation of pore pressure response pro- file	Very good reaction to changes in soil types. Cavitation was observed when drop stone encountered; pore pressure sensor recovered immediately.						
Reference readings	Cone re- sistance	Sleeve Friction	Pore water pressure	Comments			
Deck reference readings (Before/After)	$\begin{pmatrix} (12/52) \\ kPa \end{pmatrix}$ (6/5) kPa (-4/-2) kPa Large drift in cone resistance						
Seabed/ downhole reference readings (Be- fore/After)	(3752 / 3775) kPa	(7 / 15) kPa	(4996 / 5100) kPa	Clay adhere to cone after retrac-			

Example of field records and field assessment of Application class – Lunne et al 2014

Application Class analysis							
	Cone re- sistance	Sleeve Friction	Pore water pressure	Application Class			
Required Application Class based on soil type	Class 1	Class 1	Class 1	Class 1			
Application Class based on calibration	Class 1	Class 1	Class 1	Class 1			
Dimensional difference	0	0		Class 1			
Deck reference readings observed differ- ences (before and after)	40 kPa	1 kPa	2kPa	Class 2			
Output stability for all sensors (Maximum range of oscillations)	4 kPa	0 <mark>k</mark> Pa	2 kPa	Class 1			
Uncertainty caused by Temperature changes	0	0	0	Class 1			
Uncertainty caused by inclination	0.3	0.4	NA	Class 1			
Achieved Application Class	Class 2.						
Causes of deviation from desired and achieved Application Class	Observed drift on the cone end resistance sensor. Test needs to be repeated with a different cone						

Example of field records and field assessment of Application class – Lunne et al 2014

CPT in Hong Kong Challenges

- Operational error (not Hong Kong specific)
- Reliance on experienced si fu drillers (again happens everywhere)
- PS (Particular Specifications) largely copied from project to project
- Insistence on Application Class 1 tests
- Use of only standard CPTU testing
 - No specialist techniques used in Hong Kong
 - Tests such as Seismic CPT, Soil Moisture Probe, Video cones, widely used across Europe
 - Most specialist equipment has now been deployed in China

CPT in Hong Kong Potential future developments

- Project specific requirements written before tendering stage which reflect the project conditions
- Specialist CPT data review panel
- Use of specialist CPT testing methods
 - Soil Moisture Probe (SMP)
 - Digital CPT
 - Seismic CPT (SCPT)
- Digital CPT (D-cone and GSN)
 - Analogue to digital conversion in cone
 - Calibrations stored on cone
 - Easier to add and swap modules (SMP, SCPT etc).

A standard Geotechnical Sensor Network (GSN) for CPT consists of:

- 1 Digital subtraction or compression type D-Cone
- 2) High quality GSN CPT cables in standard or custom lengths
- 3 Digital depth encoder
- 4 Digital data acquisition system GME-700 with GPS as standard and optional WiFi
- 5 Data acquisition software package CPTest

Optional add-ons:

- Wireless system
- Battery add-on A (for memory or wireless* use of cone)
- Seismic module B
- SMP (Soil Moisture Probe) module C
- Magnetometer module
- Dipole module
- Temperature sensor module
- Client specific module

Future of CPT in Hong Kong Seismic CPT

- Seismic CPT (SCPT) standard CPT plus measurement of shear (+/- push-pull) wave velocity
- CPT paused at regular intervals and surface waveform generated
- Equipment:
 - CPT cone
 - Seismic receiver
 - Seismic source generation
 - Data acquisition including seismic data treatment
- Small strain shear modulus G0 directly derived from shear wave velocity

Future of CPT in Hong Kong Recommended Reading

- Recommended Reading:
 - Guide to Cone Penetration Testing 6th Edition, 2015 Peter Robertson
 - Cone Penetration Testing in Geotechnical Practice, 1994 Lunne, Robertson, Powell
 - NCHRP Synthesis 368 Cone Penetration Testing, 2007 Paul Mayne
 - American Standard, ASTM D5778 12 (2012)
 - ISO Standard, ISO 22476, Part 1 (2012)

Summary

- CPT great compliment to conventional GI
 - Fast, accurate, repeatable, well backed by scientific research, well founded parameters
- Growing use across the world
- Many parameters can be derived from CPT data
- Important to critically view CPT data to spot operational error and QC
- Some aspects such as application class are unreasonable in HK PS, poorly understood.
- Growing number of very capable contractors in Hong Kong
- Geomil in Hong Kong to support not only contractors but govt, engineers etc.
- Geomil supported by EPC in Hong Kong and China
- The future of CPT is very bright in Hong Kong with enthusiastic engineers and world class projects

Thank you

Any questions?